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ABSTRACT 

The general mathematical problem of the ?hemal entrance 

region is formulated for a pa ra l l e l  plate channel by Including the 

effects of viscous dissipat ion,  axial conduction, and wall blowing. 

The associated eigenvalue problem is solved by the B. G. Galerkln 

method and the results are presented for constant wall temperature. 

I t  is shown that the par t icu lar  method has d i s t i nc t  computational 

advantages over the classical form of solutions. The constant wall 

temperature case is investigated by employing the solutions of the 

eigenvalue problem, and i t  Is concluded that the wall blowing param- 

eter has considerable ef fect  on the temperature development. The 

axial conduction term is also shown to have considerable ef fect  on the 

temperature development for low values of Peclet number. 

° ° .  
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C H A P T E R  I 

IHTRODUCTION 

The heat t ransfer  in laminar f low of an incompressible, non- 

vlscous f l u l d  in the entrance reglon of a c i r cu la r  tube was f l r s t  

Investigated ana l y t i ca l l y  by Graetz ( I )  I ,  under the assumptlon of 

specif ied unlform wall temperature and f u l l y  developed ve loc l ty  pro- 

f i l e s .  Prlns, Mulder, and Schenk (2) solved the analogous problem wlth 

plane para l le l  plates subst l tuted for  the cy l i nd r i ca l  tube wal l .  

Various authors (3-8) have extended analysis of the problem by considering 

l increaslng complexity of the boundary condit ions and ve loc i ty  d i s t r i -  

butions fo r  c l rcu !a r  tubes and para l le l  plates. 

Abramowltz (9) and Sel lars,  Tribus, and Kleln ( I0) have pre- 

sented In deta i l  the c lassical  mathematical solut ions of the elgenvalue 

problem encountered In the analysis of thermal entrance regions. These 

authors concluded that  the evaluation of the elgenvalues and the 

eigenfunc+lons from the exact analy t ica l  expresslons resulted In con- 

sldereble computatlonal d i f f i c u l t i e s  even in the cases of r e l a t i v e l y  

slmple flow and thermal boundary condit ions. 

Sparrow and Siegel ( I I )  introduced the successfuJ appl lcat lon 

of var ia t ional  methods to the mathematical problem for  para l le !  p late 

channels and f i n i t e  cross-sectlonal ducts and approximate solut ions 

INumbers in parentheses refer  to s im i l a r l y  numbered references 
in the bib l iography.  
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were found to be In reasonable agreement with the avai lable exact solu- 

t lons for  cer ta in special cases. Dlrect numerical solut ions fo r  varlous 

hydrodynamlc ve loc i ty  p ro f l l es  In c i r cu la r  tubes were presented by 

Kays ( i2)  who compared the resul ts for  the Graetz problem against the 

exact solut ions.  

Hsu (13) presented an exact mathematical so lut lon fo r  the 

entrance region lamlnar heat t ransfer  including the ef fects  of axlal 

conduction. The temperature solut ion fo r  pipe flow correspondlng to the 

boundary condit lon of uniform wall heat f lux  was obtained. The corre- 

spondlng problem in para l le l  p late geometry was treated by Agrawal (14) 

fo r  the boundary.condltlons of constant wall temperature. The elgen- 

functions were expanded as an I n f i n i t e  Fourler-slne serles, and the 

temperature solut ion corresponding to a Peclet numberp Pe = I t  based 

on the mean ve loc l ty  was obtalned. These authors concluded that  the 

e f fec t  of  axlal conduction was s l gn l f l can t  for  low Peclet numbers. 

LeCroy (15) investigated the f e a s l b l l l t y  of appl lcat lon of  

the Bo G. Galerkln method (16) to formulate approximate solut lons fo r  

the temperature development in para l le l  p late MHD channel flows by in- 

cluding the ef fects  of viscous d iss ipat lon ,  Joule heating, non-zero net 

current,  and axlal heat conduction. 

The previously mentioned authors ( I -15) Investigated the 

thermal entrance reglon problem assumlng channels and ducts wlth so l id  

wal ls .  

The purpose of the present study is to develop approximate 

solut ions for  the temperature development and local Nusselt number in 

2 
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para l le l  p late channel flows with wall blowing by the appl icat ion of the 

B, G. Galerkin method (16). The problem was formulated to Include the 

e f fec ts  of viscous d iss ipat ion and axial heat conduction, 

3 
e 
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CHAPTER II 

ANALYTIC PROCEDURE 

h GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Consider a f lu id  of constant properties flowing between 

In f i n i t e  paral le l  plates. The mathematical problem Is formulated in the 

Cartesian coordinate system (Xl,  x2, x3) ~ with x 3 taken at the base of 

the channel along the direct ion of the applied pressure gradlentp 

dP/dx3o The or ig in  of the system is taken at the point of Intersection 

of the x 3 axis with the plane at which the thermal entrance region 

i n i t i a tes ,  as shown in Figure I. I t  is assumed that there is a constant 

Inject ion of f lu id  through the wall at x 2 = O, and that there is a con- 

stant suction of f l u id  through the wall at x 2 = L, The mass flow rate 

due to !nJection ls assumed to be equal to that due to suction producing 

a ve loc i ty  componentp Vw. I t  is fur ther assumed that the flow Is f u l l y  

developed at the thermal entrance plane. 

For f u l l y  developed flow conditions and for a paral le l  plate 

channel conflguration of i n f i n i t e  dlmensions along x I and x3w with no 

ve loc i ty  component along x i directlonp I t  is concluded that the applied 

axial pressure gradient, dP/dx3, is a constant. 

The governing equations for  f u l l y  developed, steady statep 

Incompressible flow of a viscous f lu id  with constant properties for 

i n f i n i t e  paral le l  plates along the x I d l rect lon are: 

4 
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V2(x 2) = V w Tin(x2) 

eo(y) Bin(Y) - 
• T(x2' x 3) dP/dx3 - 

T o (x 2) L 
• El(y, ~ ) J V3(x 2) 

To V2(x2) = Vw ~ u(y) - 

x I 

Fig. 1 Channel Geometry 
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Continuity equation, 

aV2 
~x---2 (x2) = 0 

which Integrates into, 

(I) 

V2(x 2) = V w = constant (2) 

Nomentum equation, 

a2v3 av3 IaP 
v ~ (x 2) - Vw % (x 2) P-~3 m 0 ()) 

Energy equation, 

IV ~T p Cp w ax--~ (x2,x 3) + V3(x 2) ~ (x2'x3) = 

I a2T ~2T )1 ~-~2 (x2,x3) + .-~3 (x2,x3 + ~ (x2) (4) 

where the dissipation funct|on, $(x2) , is given by, 

~dV3 )1 2 #(x 2) = pv Ld--~2 (x 2 (5) 

The hydrodynamic boundary conditions on the velocity component, 

V3(x2), are determined according to the nonsllp conditions on the 

stationary wails, 

• V3(O) = O~ V3(L) = 0 (6) 

6 
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The temperature d l s t r l b u t l o n  Is prescr ibed a t  the t h e m a l  

entrance p lane ,  x 3 = O, as a funct lon  of  x 2 ,  

:-=.~fem.e"..eq bnB ~eidei-~ev aaelnoizn~,m, ib l~ . ]wc l l o t  o.1"t n'r!.~ 
T(x2,0)  = To(x 2) (7) 

and is prescr ibed as equbl t~per-a~'bVr~ a'r' b-~ih = ~al Is' oi--ih-'e vparal le l  

p l a t e  channel ,  
wT -- o T ~'f ,- (~..-.xLsx)T 

T(O,x3) = ~w, T~L,x3) = Tw w' - o'  (8) 

£ 
T,he t rema I n i ng cond i t i on on the temp e~ ; t~ re  - c L l . ~ ~ e n (  ,,i ~ determ i ned 

' L W I  --  (~ I ~A " 

from the thermal fy f u l l y  developed cond i t i on ,  T®(x2,x3) , by so lv ing  
-'lsameff e3nsTtne efl'f di ' iw betei3o2~e aulsv 3i ' i '~i~,efosnsd: -~ el ~T e'led~- 

the I | m i f i n g  case, x 3 ÷ - ,  o f  the energy equat ion,  
• (£x)oT ,no11"udi3tz[b s-~ut~ 

9 ¢, emoo~d ,ylevit'seq~,,~3 ,~ nOT~BUp3 ,no: tSupe y~er le  ?~,lt bn~ 

under the boundary cond i t i ons ,  

b b  i j-%O 

T=(O) = Tw, T=(L) = T w ~'<b (10) 

There would be l l t t l e  change_.~n the f u r t h e r  mathematlcal development o f  
~,~ ,,~ "~'-- =,'L~-,-.') -'"= X + (,:,\,1 ---=., (~::u ! e-.t 
. . . .  i , ~ ,  .~ o ] the problem i f  the thermal bou~dar~ condY~ions on the channelJ wa l l s  were 

assumed to  be constant  wal l  temperatures 9~sunequal value.  
(~ I )  (Y)~ + (~LY) ~ + 

II. NON.DIMENSIONAL PROBLEM 
~t no i~nu~  n o i ~ c q ] ~ i b  ~aeinoi~nemlb ed'r ~"~srlw 

The mathematlcal  system Is non-dlmenslonal ;zed based on the 

3 , 
cq~sl~ant pressure g rad len t  by def ln lng"aI ( /h ,  qr~,~1~e~!Is.l;,~=ve~.0elty , Vc, 

L - "  Y 
a s  
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L 2 dP 
V c = _ _ _  

with the fo l lowing d l~ns ion less  variables and parameters: 

( I I )  

x2 x 3 V3 (x2) 
Y = t -  , z = ~ - ,  u (y )  = ~ ,  

T(x2,x 3) - T w T O - T w 
e = T~ - T w ' e°  = o ~ W  ' 

L 2 
T(y) = ~ f ~ ~ -  #(x 2) (12] 

where T~ Is a charac ter ls t l c  value associated wlth the entrance temper- 

ature d l s t r l bu t l on ,  To(X2). 

The dlmenslonless forms of the momentum equatlon, Equation ~, 

and the energy equatlon, Equatlon 4, respect lvely,  become 

d2u du 
( Y )  - ( y )  - - , ( , 3 )  

ae ] a2e 
Pe u(y) ~u, (y,z)  + ~ ~ (y,z)  = (y,z)  

~2e 
+ ~ [y ,z)  + ¥(y) 

where the dlmenslon3ess d lss lpat lon functlon Is 

( 1 4 )  

T(y) = Pr Ec du (y) (15) 
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In Equations 13 through 15 the dimensionless parameters are defined as: 

Vc2 
= .  = .  Ec ~ Pseudo. Eckert Number 

Pe = PVcCpL 
K 

= Pecle@ Number 

Pr= 
K 

= Vw 
Vc 

= Prandtl Number 

= Wall Ve loc i ty  Parameter 

Rc = Vc L 
l = Charac te r i s t i c  Reynolds Number 

V w L 
RcX = ~ = Wall Blowing Parameter (16) 

The boundary condi t ion for  the dimensionless ve loc i t y  u (y ) ,  becomes 

u(0) [] 0p u(1) = 0 (17) 

and the thermal boundary condi t ions for  the dimensionless #emperaturep 

O(y,z) ,  at  the thermal entrance, and at the wal ls are: 

e(y,0) = eo(Y) , e(0,z) = 0, e(L,z) = 0 ( 1 8 )  

The remaining boundary condi t ion required to  complete the so lu-  

t i on  is determindd from the thermal ly  f u l l y  developed dimensionless 

temperature d i s t r i b u t i o n ,  e=(y), 

e=(y) = ilm e(y,z)  (19) 



A E DC-T R-69-58 

Solving the l im i t i ng  case, z ÷ =, of the non-dimenslonal energy equation, 

Equation 14, the mathematical system becomes, 

d29® d6= 
(y) - Pr Rc;L d~-  (y) + ¥(Y) = 0 

e®(0 )  = 0 ,  O ( I )  = 0 ( 2 0 )  

The solut ion fo r  the f u l l y  developed dimensionless temperature d i s t r i -  

but ion, Equation 20, Is given Tn Appendix B, 

III. GENERAL METHOD OF SOLUTION 

Since the f l u i d  propert ies are assumed to be constant, the 

dimensionless momentum equation fo r  the ve loc i ty  pro f l le~  u(y) ,  is 

independent of the energy equation, The so lut ion of Equation 13 fo r  

u(y) is given In Appendix A as 

I [ m - oRcXy ] 
u{y) = ~ Y - I - e Rc~ ( 2 1 )  

Hence, the dimensionless energy equation represents a l inear ,  non- 

homogeneous, par t ia l  d i f f e r e n t i a l  equation with var iable coe f f i c ien ts  

subject to the given boundary condl t ions, 

Defining a new independent var iab le ,  ~, as the dimensionless 

axial coordinate scaled by the Peclet number and a new dependent 

var iab le,  ~ (y ,z ) ,  as the dimensionless excess temperature which is the 

d i f ference between the local temperature and f u l l y  developed temperature 

d i s t r i b u t i o n ,  9®, as: 

10 
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__ z 

~(y,E) = e(y,z) - e=(y) (22) 

the energy equation, upon subst i tu t ion of Equation 22 Into Equation 14, 

becomes 

~ ~ (Y,E) ~2~ I ~2~ 
u(y) Pe a " -TzCy,   

a2e= ~e= J = L~y-~-- (y) - PrRcX y ~ - ( y )  + ¥(y) (23) 

The bracketed term on the r igh t  hand side of Equation 23 Iden t i ca l l y  

vanishes'according to the f u l l y  developed solut ion of the mathematical 

system, Equation 20, hence the d i f f e ren t i a l  equation for  the dimenslon- 

Jess excess temperature, Q(Y,E), reduces to a homogeneous par t ia l  

d i f f e r e n t i a l  equation with var iable coe f f i c ien ts ,  

u(y) ~g (Y,E) + PrRcX ~ 

with boundary condit ions: 

(Y,E)  = a2~ (Y,~;) + I a2~ (24) 

~(y,O) = ~o(y) = eo(y) - e=(y) 

~ ( 0 , ~ )  = O, ~ ( I , ~ )  = 0 

Iim ~(y,~) = 0 (25) 

11 
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The general solut ion of the d i f f e ren t i a l  equation, Equation 

24, can be constructed as an i n f i n i t e  series of the form: 

n•l -8nE 
~(y,E) = a (n) (ln(Y)e (26) 

where the eigenfunctions, an(y) , and the associated eigenvalues, Bn, 

are to be determined from the homogeneous eigenvalue problem, 

d2~n d~n [ 
(Y) - PrRcX d-~ (Y) + 8 n u(y) 

with the boundary conditions 

 n2] 
+ ~ an(y) = 0 (27) 

Rn(O) = O, an({) = 0 (28) 

A s imp l i f i ca t ion  of Equa%ion 26 is possibie by defining a new set of 

eigenfunctions of the form, 

Fn(Y) = e-½PrRcXY an(y) 

Hence the eigenvalue prob!em reduces ~o, 

(29) 

Fn(Y) = 0 (30) 

Fn(O) = O, Fn(I) = 0 

The general solut ion of the d i f f e ren t i a l  equation, Equation 

24, becomes 

12 
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~PrRcXY -BnE 
~[y,~) = a In) Fn[Y)e • 131) 

n=l 

Since axial conduction and wall blowing ef fects  are Included, 

the general form of the d i f f e r e n t i a l  equation, Equation 30, does not 

sa t i s fy  the condit ions of  the c lassical  Sturm-Llouvi l le  system with a 

complete set of eigenfunctions which are orthogonal with respect to  

the weighlng funct ion u(y).  I f  we assume that  Fn(Y) and Fm(Y) are two 

charac ter is t i c  functions which are solut ions of Equation 30 and le t  B n 

and B m be the corresponding eigenvalues, assuming m ~ n, then the 

integral re la t ion  between the associated elgenfunctions becomes 

(B n - B m) f u(y) Fn(Y) Fm(Y) dy 
0 

6n 2 _ 6m 2 I 
+ F Fn(Y) Fm(Y) dy = 0 (32) pe 2 J 

0 

Equation 32 reduces to the Strum-Liouvi l le  system sa t is fy ing  the pro- 

perry of or thogonal l~/  fo r  the l im i t i ng  case of  Pe ÷ ®, hence the present 

problem may be considered as a more general class of eigenvalue problem 

of thermal entrance regions. 

13 
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CHAPTER III 
APPROXIMATE SOLUTION OF THE EIGENVALUE PROBLEM 

BY B, G, GALERKIN METHOD 

The analy t ica l  construct ion of the exact solut ions for  the 

eigenvalue problem of thermal entrance regions is d i f f i c u l t  even In the 

case of hydrodynamic condit ions with the axial conduction term and wall 

blowing being neglected. The eigenfunct ions, for  th is  res t r ic ted  class 

of Sturm-Liouvi l le  systems, are obtained as i n f i n i t e  series of Bessel's 

functions of various orders which create considereble computational 

d i f f i c u l t i e s .  Since the present problem represents a more generelized 

class of  eigenvalue system, one expects at least the same amount of 

mathematical complexit ies in the construct ion of the exact so lu t ion.  

Although numerical solut ions of the eigenfunction d i f f e r e n t i a l  equation, 

Equation 30, are possible, the two point  boundary condi t ions,  together 

with the unknown .Bn, necessitates simultaneous i t e ra t l ve  schemes for  the 

eigenvalues and e!genfunctions which resul t  in extensive computational 

e f f o r t .  

I t  is proposed to  obtain a f i n i t e  set of approximate eigen- 

values and associated elgenfunctlons for  Equation 30 by the appl ica t ion 

of the B. G. Galerkln method° Let ~ k ( y )  t be a selected s e t  o f  funct ions 

with continuous f i r s t  and second order der ivat ives in the range, 

0 s y s I ,  that  sa t i s fy  the homogeneous boundary condit ions Iden t i ca l l y  

for  a~i k. The selected funct ion set must sa t i s f y  the condlt ions 

14 
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~k(O) = O, ~k(I) = 0 (k = 1,2 . . . . .  N) (33) 

The approximate solution for Fn(Y) is constructed as a l inear 

combination of the f i n i t e  set of functions {~k(y)} as: 

N 
Fn(Y) = ~ ai (n) ~i(y) [] al(n) ~l(y) + . . .  ak(n) ~N(y) (34) 

i=l 

Since the set ~k(y) ident ica l ly  sat is f ies  the boundary con- 

d i t ions,  Equation 33, for al l  k, Fn(Y) also sat is f ies  the homogeneous 

boundary conditions. Substituting Equation 34 into Equation 30 gives 

the fol lowing, 

ai(n) ~ (Y) + BnU(Y) + Pe-'~- 4 ~i(y = 0 (35) 

i=l 

The non-dimensionalized veloci ty p ro f i le ,  u(y), is not 

necessarily symmetric about the channel centerl ine; therefore, the 

eigenfunctions, Fn(Y) , are expected to yield non-symmetrical solut ions. 

Considering the form of the boundary conditions, Equation 33, a 

tr igonometric function set, {~k(y)} ,  is selected as= 

~k(y) = sin k 

k = 1,2,3, .... N (36) 

Following the method of B. G. Galerkin, that is, mult ip ly ing 

Equation 35 by the functions of the set, ~k(y) = sin k~y, and 

15 
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I 

integrat ing over the range, 0 ~; y < I j  the l inear system of equations 

becomes: 

N Zo,'n'  I'n 2 pr2 n','"."÷ ~ -  ~ c2~2 
i = l  

I2~2]I2(k,1) l = 0 (37) 

The expressions for the integrals in Equation 37 can be obtained by 

analyt ical  Integrat ion using the veloci ty d is t r ibu t ion ,  u(y),  given in 

Equation 21 as: 

i f  i # k ,  

I 
Ii(k~i) = f u(y)sin i~y sin k~y dy = 

0 

z,, ( i - . - 'T ;  

.c,[ ,][ I -  ~-I ) i+keRc 
2 (eRc)'- I ) Rc2~2 + (i+k)2v 2 

' Jl 
Rc212+ ( I -k) 2v2 

(38) 

i f  i = k ,  

' Rc~ 2 (eRc '~- I ) 

~ - Rc2X 2 + 4i2~2 
(39) 
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and, 
I 

I 2 ( k ' i )  = ~o 
I sin ivy sin k~ry dy [] ~ '6 lk  (40) 

where 6ik is ,he Kronecker delta. Therefore, Equation 37 becomes a 

homogeneous system of l inear equations for the undetemined l inear 

combination constants, a l (n) .  I f  a non- t r iv ia l  solution is ?o exist  

(n), for the a I s, hence giv!ng Fn(Y) a non-t r iv ia l  solut ion, the 

determinant of the coef f ic ient  matrix must vanish ident ical ly  for each 

B n , 

Pr2 2 2 2 2] 
De@ n I l ( k , i )  [Pe-'~ 4 i I2 (k , i  = 0 ( 4 1 )  

Equation 4Z represents a polynomial of at most 2N degree in 

Bn, with possibly N d is t inc t  posit ive roots. A set of (N-I) l inear ly 

Independent equations for a i (n) ts  exists for each B n evaluated as a root 

of Equation 41 which may be solved in terms of one of the unknown l inear 

combination constants, aj (n), which wi l l  remain undetermined. Selecting 

the par t icu lar  undetermined constant as al(n) = An, the l inear system of 

equations for  the remaining constants am(n) becomes: 

~ .  f n I l ( k , i )  +r Bn2 pr2Rc2X2 
i=2 4 

I +[ Bn2 Pr2Rc212 6n I I ( k,  I ) ~ - 4 

12~ 2 ]  I 2 ( k , i ) t c i ( n )  = 

( 4 2 )  

17 
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where 

c i (n) = a i (n )  
= 

al 

a i (n )  

A n 

k = 2 , 3 j . . . N  (4.3) 

Equation 42 Is a non-homogeneous system of  l i near  equations 

(n) t  which can be solved to  determine the c i s f o r  each B n evaluated as 

a root  of  Equatidn 41. Hence the approximate e lgenfunc t ion ,  Fn(Y) ~ 

associated wi th B n becomes 

N 
Fn(Y) = A n ~ .  c i ( n )  s in ivy (44) 

i=1 

where c i (n )  = I ,  and the ei(n)ws are known from the so lu t ion  of  Equation 

42° Subs t i t u t i ng  Equation 44 in to  Equation 31 y ie lds  the approximate 

so lu t lon  f o r  1:he dimensionless excess temperature, 9(y,E)0 as: 

a(y ,~)  = ~ .  A n ~PrRcXY c i l n )  s in iv e-t3n g 1451 

n=l i=1 

where K is the maximum number of  d i s t i n c t  eigenvalues evaluated as the 

roots of the determinant~ Equation 41. 

By apply ing the boundary cond i t ions  given in Equation 25 the 

remaining K number of  constants,  An, can be determined from 

18 
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= ~PrRcXY c l (n ]  sin l=y = ~o(y) (46] ~(0py) 
. .  = .  

which represents the funct ion go(y) as a l lne~r comblnatlon of known 

continuous funct ions,  ~n(y),  In the range 0 =; y < I .  Slnce the f i n i t e  

set ~ l (y )  = s|n i=y sa t l s f | es  the necessary regu la r i t y  condi t ions,  A n 

can be determined by the appl icat lon of an extension of the Weierstrass 

approximation theorem (17). That is ,  mu l t ip l y ing  Equation 46 by ~m(y) 

and in tegret ing over 0 < y < I ,  the system of equations becomes.- 

K 

A n [ I ( m , n ] ]  = L(m) (47) 
n=l 

where the |ntegra!s are defined as: 

Z(m,n) = c| (n) sin i= c j  (m) sin dy (48) 

o I=I "= 

L(m) = ~o(y) • sin i=y e dy (49) 
o i=1 

where 

Cl (m) = c l (n )  = I;  ~o(y) = eo(y) - e®(y) (50) 

The in tegra ls  of Equations 48 and 49 may be evaluated by ana ly t i ca l  

Integret |on using the f u l l y  developed temperature, 6=(y), as presented 

in Appendix Bo 
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Since c i (m)ts were previously detemlned, Equation 47 repre- 

sents a non-homogeneous system of K l inear  equations in K unknowns which 

can be solved for  the AntS to complete the approximate solut ion fo r  the 

excess tempereture d i s t r i bu t i on .  

20 
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CHAPTER IV 
NUMERICAL RESULTS FOR THE ASSOCIATED 

EIGENVALUE PROBLEM 

The general method, developed In the previous chapter,  was 

appl ied to  the associated eigenvalue problem, Equation 30, wi th two 

f i n i t e  sets of t r igonemet r ic  funct ions,  N [] 8 and N = 16. Us ing the  

f i n i t e  set ,  N = 8, the eigenvalues fo r  a l l  cases under cons iderat ion 

were obtained. A second set ,  N = 16, wi th the Peclet number, Pe = I ,  

was used to check the convergence of the method by comparing the resu l ts  

with the f r r s t  set ,  N [] 8. 

The eigenvalues, Bn, were determined by evaluat ing the roots 

of the determinant contain ing Bn, Equation 43, by the Gausslan reduc#ion 

technique on the maximum element of  the matr ix .  Using an incremental 

set of B vaiues, the determinant was evaluated w i th in  a selected Bma x 

range. The approximate locat ion of a root was indicated by a change in 

sign of the value of the determinant between two Increments. The exact 

values of B n were ca lcu lated by a con t ro l led  successive i t e r a t i o n  scheme 

based on the regu la - f a l s i  method. A maximum number of twenty I t e ra t i ons  

were allowed with terminat ion check on e ight  d i g i t  accuracy fo r  two 

successively ca lcu lated values fo r  each root of  the eigenvalue. 

The numerical ca lcu la t ions  were performed by a CDC 1401B 

model computer on s ing le  prec is ion level of eleven f l o a t i n g  po in t  num- 

berso The maximum desired values fo r  the eigenvalues were bounded by 
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~max = 2900 fo r  the case of Pecle# number, Pe = =, by 6ma x = 6000 fo r  

the case of  Pe = I00, and by Bme x = 600 fo r  the cases of  Pe = I0 and I. 

These ranges of Bma x were selected fo r  ca l cu la t i on  a f t e r  the I n i t i a l  

i nves t lga t ion  of  the eigenvalues wi th wall blowing, RcX= 0.1,  f o r  the 

case of Pe = =. Except f o r  the cases Pe = =, the range of Bma x was 

large enough to  y i e l d  8 and 16 roots fo r  the two f i n i t e  sets o f  

t r i gonemet r l c  funct ions.  The ca lcu la t ions  were car r ied  out pa.remet- 

r i c a l l y  fo r  Prandtl  number, Pr = 0.01, 0.1,  I ,  I0, Peclet  number, Pe = =, 

I00, I0, I ,  and wall blowing parameter, RcX= 0.1,  I ,  5, I0. For a 

given set of  parameters Pr, Pe, and RcX, the average computational t ime 

required fo r  a complete set of elgen'values was 1.0 minutes f o r  the 

funct lon set N = 8 and 4.5 minutes f o r  the funct ion set  N = 16. 

The elgenvalues, ca lcu la ted from the determinant,  Equation 43, 

are presented In Tables I through V, fo r  parametr ic values of  the Peclet  

number, Prendtl number, and the wall blowing parameter, RcX. 

Inspection of the data presented in Tables I through V ind icates 

tha t  the Peclet  number has a strong e f f e c t  upon the value of the e igen-  

values. For the Peclet  number, Pe = =, on ly  three and four  eigenvalues 

e x i s t  in the range 0 5 6 n $ 2900, see Table I .  Table i l  presents data 

f o r  Pecle# number, Pe = IO0, and e lgh t  roots are noted to  e x i s t  In the 

range 0 $ B n ~ 6000. For the low Peclet  numbers, Pe = I0 and Pe = I ,  

the range 0 ~ 6 n ~ 600 y ie lds  e igh t  roots f o r  the N = 8 set and s ix teen 

roots f o r  the N = 16 set .  A comparison of a p a r t i c u l a r  elgenvalue, 61, 

f o r  the var ious Peciet  numbers shows tha t  there is a marked decrease 

in the elgenvaiue magnitude as the Peclet  number is reduced. For the 
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T A B L E I  

EIGENVALUES FOR Pe = ~ , N  = 8 

B n 

n Pr Rc). = O. I Rc). = I Re), .= 5 RcX = I0 

I 0°01 9.05047(I)  9.21134(I)  1.26480(2) 2.03400(2) 
2 0.01 4.316t9(2) 4.39061(2) 5.95464(2) 9.31460(2) 
3 0.01 1.02892(3) 1.04656(3) 1.41640(3) 2.20617(3) 
4 0.01 1.88233(3) 1.91454(3) 2.58979(3) 

! 0o10 9o05050(I) 9.21365(I)  1,27262(2) 2,08364(2) 
2 0.10 4,31620(2) 4,39088(2) 5,96389(2) 9.37328(2) 
3 0,10 1.02892(3) 1°04659(3) 1,41739(3) 2.21245(3) 
4 0,10 1.88234(3) 1.91457(3) 2.59082(3) 

I 1.0 9.05276(I)  9.44365(I)  2.04845(2) 6.81109(2) 
2 1.0 4.31646(2) 4.41790(2) 6.88590(2) 1.51393(3) 
3 Io0 1.02895(3) !.04947(3) i .51625(3) 2°83737(3) 
4 Io0 1.88236(3) 1.91757(3) 2.69375(3) 

1 I0o0 9o27888(I) 3.22358(2) 7,07480(3) 
2 !0o0 4,34301(2) 7,09066(2) 8.43610(3) 
3 I0o0 1.03170(3) 1,33630(3) 1.00050(3) 
4 I0,0 1.88531(3) 2.21626(3) 

The numbers in the parentheses represent I0 (n) 
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T A B L E  II 

E IGENVALUES FOR Pe = 100, N = 8  

B n 

n Pr RcX = 0.1 RcX = I RcX = 5 RcX= I0 

I 0.01 8.40486(!)  8.53422(I)  1.10910(2) 1.54939(2) 
2 0.01 3,20737(2) 3,23936(2) 3,79159(2) 4,49716(2) 
3 0.01 6.05883(2) 6.10039(2) 6.78216(2) 7.58133(2) 
4 0.01 9,04658(2) 9.09314(2) 9,84295(2) 1,06941(3) 
5 0.01 1o20875(3) 1.21374(3) 1.29333(3) 1.38189(3) 
6 0=01 1.51554(3) 1.52089(3) 1.60436(3) 1.69500(3) 
7 0.01 1.83986(3) 1.84438(3) 1.92000(3) 2.00883(3) 
8 0.0I 2.15079(3) 2.15650(3) 2.24295(3) 2.33185(3) 

I 0.10 8.40488(I)  8.53621(I)  I . I I 522 (2 )  1.58011(2) 
2 0.10 3.20738(2) 3.23952(2) 3.79595(2) 4,51588(2) 
3 0.10 6.05883(2) 6.10051(2) 6.78529(2) 7.59420(2) 
4 0,10 9,04658(2) 9.09324(2) 9.84535(2) 1.07038(3) 
5 0,10 1,20875(3) i .21375(3) 1.29352(3) 1.38267(3) 
6 0o10 i .51554(3) 1052089(3) 1.60452(3) 1.69566(3) 
7 0o10 1.83986(3) 1=84439(3) 1,92014(3) 2.00939(3) 
8 0,10 2,15079(3) 2,15651(3) 2.24308(3) 2.33235(3) 

I 
2 
3 
4 
5 
6 
7 
8 

I 
2 
3 
4 
5 
6 
7 
8 

.0 8.40684(i)  8 .7345! ( I )  1.69123(2) 3.92222(2) 
o0 3.20753(2) 3.25542(2) 4.21879(2) 6°17795(2) 
o0 6,05895(2) 6.11247(2) 7°09277(2) 8.84479(2) 
,0 9.04667(2) 9.1026i(2)  1,00829(3) i .16431(3) 
.0 1,20876(3) 1.2145E(3) 1.31279(3) 1°45908(3) 
.0 1.51555(3) 1.52154(3) 1.62070(3) 1.75993(3) 

1,0 1.83987(3) 1.84995(3) 1.93409(3) 2.06479(3) 
Io0 2,15079(3) 2.15700(3) 2.25539(3) 2.38!24(3) 

I0.0 8.60264([)  2.60327(2) 2.12674(3) 4°72485(3) 
i0.0 3.22333(2) 4.70391(2) 2,25070(3) 4o81060(3) 
I0=0 6.07087(2) 7.24537(2) 2.37492(3) 4.88838(3) 
I0o0 9.05603(2) !.00082(3) 2.50961(3) 4.96462(3) 
I0.0 1.20952(3) 1.28920(3) 2°66530(3) 5°05057(3) 
I0,0 1.51619(3) 1.58482(3) 2.84497(3) 5.15268(3) 
I0.0 1.84043(3) 1.90026(3) 3.04767(3) 5.27047(3) 
I0o0 2.15128(3) 2.20570(3) 3.27985(3) 5.42B32(3) 

The numbers In the parentheses represent I0 (n) 
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T A B L E  III 

E IGENVALUES FOR Pe = 10, N = 8 

B n 

n Pr RcX = 0.~ Rc), = I Rc), = 5 RcX = I0 

I 0.01 2°64449(I) 2,65257(I) 2.77959(I) 2.91402(I) 
2 0,01 5,84972(I) 5°85633(i) 5.95883(i) 6,06866(I) 
3 0.01 9.00428(I) 9.01076(I) 9.11090(i) 9.21679(I) 
4 0.01 1,21497(2) 1,21562(2) 1.22564(2) 1.23616(2) 
5 0,01 1,52927(2) 1.52992(2) 1,53998(2) 1.55050(2) 
6 0,01 1,84548(2) 1,84414(2) 1,85424(2) 1,86476(2) 
7 0o01 2.15787(2) 2,15852(2) 2,16852(2) 2,17900(-2) 
8 0,01 2.47204(2) 2.47270(2) 2,48281(2) 2,49330(2) 

I 0.10 2.64449(I) 2.65296([) 2,78935(!) 2,95304(I) 
2 0,10 5,84972(I) 5,85652(!) 5.96375(I) 6.08832(I) 
3 0 . 1 0  9,00428(1) 9.01089(I) 9.11418(I) 9.22991(I) 
4 0,10 1,21497(2) 1.2i563(2) 1,22589(2) 1,23715(2) 
5 0,10 1,52927(2) 1,52993(2) 1,54018(2) 1.55129(2) 
6 0.10 1.84348(2) 1.84414(2) 1.85440(2) 1.86542(2) 
7 0.10 2o15787(2) 2,15852(2) 2,16866(2) 2.17956(2) 
8 0.10 2.47204(2) 2,47270(2) 2.48294(2) 2.49397(2) 

I 
2 
3 
4 
5 
6 
7 
8 

,0 2,64488(I) 2.69155(I) 3,64735(I) 5,67200(I) 
.0 5.8499t( I )  5.87614(]) 6 .4373[ ( I )  7,8~454(i) 
,0 9,00442(I) 9o02399(I) 9,43664(I) i,04606(2) 
.0 1,21498(2) i,21661(2) 1.25026(2) 1.33196(2) 
.0 1,52928(2) 1,53072(2) 1.55975(2) 1,62815(2) 
.0 1,84349(2) 1.84480(2) 1.87074(2) i,92994(2) 
.0 2, i5788(2) 2,15909(2) 2.18268(2) 2,23512(2) 
,0 2.47205(2) 2,47320(2) 2.49522(2) 2.54255(2) 

10.0 2,68345(I) 5.39442(I) 2,48045(2) 4°98478(2) 
10.0 5,86952(I) 7.59931(I) 2°54481(2) 5.01800(2) 
1 0 o 0  9,0~752(I) !,02538(2) 2.64012(2) 5,06728(2) 
10.0 I,21596(2) 1,31139(2) 2°76692(2) 5°!3500(2) 
10,0 1o53006(2) 1.60756(2) 2.92161(2) 5.22061(2) 
10,0 1,84414(2) 1.90931(2) 3.10020(2) 5,32329(2) 
10,0 2.15844(2) 2.21464(2) 3.29898(2) 5o44213~2) 
10,0 2,47254(2) 2,52014(2) 3,51451(2) 5.57627(2) 

The numbers in the parentheses represent 10 (n) 
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TABLE IV 

EIGENVALUES FOR Pe = !, N = 8 

~n 

n Pr RcZ = 0={ RcX = I RcX = 5 RcX = 10 

I 0o0 
2 0,0 
3 0.0 
4 0.0 
5 0.0 
6 0.0 
7 0=0 
8 0.0 

I 
2 
3 
4 
5 
6 
7 
8 

I 
2 
3 
4 
5 
6 
7 
8 

O, 0 
O. 0 
O. 0 
O. 0 
O= 0 
O. 0 
O= 0 
O. 0 

3.08773(0) 
6,23850(0) 
9.38181(0) 
1.25239(I) 
1.56658(I)  
1,88075(I) 
2,19492(i) 
2,50909(I) 

3.08773(0) 
6=23850(0) 
9.38181(0) 
1o25239(I) 
io56658(I) 
1.88075(I) 
2o{9492(() 
2,50909(]) 

3.08870(0) 
6,239i9(0) 
9,38248(0) 
1.25246(I) 
1.56665(t) 
1 , 8 8 0 8 2 ( ~ )  
2=i9499(i) 
2.50916(I) 

3.08909(0) 
6.23939(0) 
9.38261(0) 
;o25247(f) 
i=56666(I) 
1 ° 8 8 0 8 3 ( I )  
2=[9500(I) 
2,50916(i) 

3.10347(0) 
6.24992(0) 
9.39287(0) 
1.25350(I) 
!o56768(I) 
1.88185({) 
2o!9026(i) 
2.51019(I) 

3, i !331(0) 
6.25484(0) 
9.39616(0) 
! .25374(I)  
1=56788(I) 
1=88202(0) 
2 , [9616( i )  
2o51031(i) 

3.11848(0) 
6.26149(0) 
9,40383(0) 
1.25458(I) 
r .56875(I) 
1.88293(t) 
2,197o9(i) 
2=51126(I) 

3,15762(0) 
6=28115(0) 
9.41696(0) 
1o25556(~) 
Io56954(I) 
1.88358(I) 
2. ]9765(] )  
2o51175(:) 

.0 3.08813(0) 3.02823(0) 3.97665(0) 5.88148(0) 

.0 6.25905(0) 6,25305(0) 6.72896(0) 8,00794(0) 
,0 9o38194(0) 9.39573(0) 9.71878(0) 1=06478(i) 
,0 1,25240(I) 1.25346(I) 1.27812(I) 1°35038(r) 
,0 1.56659(!) fo5~744(I) 1.58745(I) ~,64640(1) 
,0 i .88076())  io88~48(I) 1,89836(I) i ,9481] ( { )  
,0 2.19493(i)  2,~9556(0) 2,21018(I) 202532t(8) 
=0 2=50909(I) 2.50965(I) 2=52259(I) 2.56051(I) 

!0.0 3.12726(0) 5°85[93(0) 2=51580(I) 5,00748(~) 
I0.0 6=25836(0) 7.98580(0) 2=57441(I) 5.03713(I) 
I OoO 9o39506(0) !006266(I) 2=66855(I) 5=08594(I) 
iO=O 1,25339(]) 1,34828~1) 2=79491(I) 5015342(5) 
I0o0 1o56738(I) i ,64431( i )  2=94940(I) 5°23889(0) 
I0.0 1.88142(I) 1=94601(I) 3.12788(I) 5.34147(I) 
I0,0 2,19549(I) 2=25511(I) 3.32649(I) 5.46022(I) 
I0.0 2,50959(i) 2,55841(I) 3.54185(i) 5,59410(I) 

The numbers in the parentheses represent JO (n) 
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TABLE V 

EIGENVALUES FOR Pe = !, N = 16 

Bn 
• m 

Pr Rc)- = 0.1 Rc~ = I Rc)- = 5 RcX = I0 

I 0,01 
2 0.01 
3 0.01 
4 0 .01  
5 O.OI 

_6 0.01 
7 0,01 
8 0 . 0 1  
9 0 . 0 1  

I0 0,01 
I I  0.01 
12 0,01 
13 O.OI 
14 O,OI 
i5 O.Oi 
16 0.01 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
I I  
12 
13 
14 
15 
16 

0.10 
0.10 
O. IO 
0.10 
0o10 
O. IO 
0,10 
0.10 
O. IO 
0.10 
0.10 
0.10 
0.10 
0o10 
0.10 
0,10 

3.08773(0) 
6.23850(0) 
9.38181(0) 
1.25239( ) 
1.56665( ) 
1.88075( ) 
2.19492( ) 
2.50909( ) 
2,82325( ) 
3.13741( ) 
3,45157( ) 
3.76573( ) 
4.07989( ) 
4.39405( ) 
4.70822( ) 
5,02238( ) 

3.08773(0) 
6.23850(0) 
9.38181(0) 
1.25239( ) 
1.56658( ) 
!.88075( ) 
2.19492( ) 
2.50909( ) 
2.82325( ) 
3,13741( ) 
3.45157( ) 
3 ,76573( I )  
4 .07989( I )  
4 .39405( I )  
4 .70822( i )  
5 .02238( I )  

3.08870(0) 
6,23919(0) 
9.38248(0) 
1.25246(I) 
1.56665(I) 
1,88082(I) 
2 .19499(I )  
2 ,50915(I )  
2 .82332(I )  
3 .13748( I )  
3 .45164(I )  
3 .76580( i )  
4 ,07996(! )  
4 ,39412( I )  
4 .70828(I )  
5 .02244(I )  

3.08909(0) 
6.23939(0) 
9.38261(0) 
1.25247( ) 
1.56666( ) 
1.88083( ) 
2.19500( ) 
2,50916( ) 
2.82332( ) 
3.13748( ) 
3.45164( ) 
3.76580( ) 
4.07996( ) 
4.39412( ) 
4.70829( ) 
5.02245( ) 

3.10347(0) 
6.24992(0) 
9.39287(0) 
1.25350( ) 
1.56768( ) 
1.88185( ) 
2.19602( ) 
2.51019( ) 
2,82435( ) 
3 .13851(I )  
3 .45267( I )  
3 ,76683( I )  
4 ,08206(I )  
4 .39515(I )  
4 .70931( I )  
5 .02347(I )  

3,11331(0) 
6.25484(0) 
9.39616(0) 
1.25374( ) 
1.56788( ) 
1,88202( ) 
2,19616( ) 
2.51031( ) 
2.82446( ) 
3.13861( ) 
3.45276( ) 
3,76691( ) 
4.O81O7( ) 
4.39522( ) 
4.70938( ) 
5.02353( ) 

3.11848(0) 
6.26149(0) 
9.40383(0) 
1.25458(I)  
1.56875(I)  
1.88293( ) 
2.19709( ) 
2,51126( ) 
2.82542( ) 
3.13958( ) 
3.45374( ) 
3.76790( ) 
4.08206( ) 
4,39622( ) 
4 . 7 1 0 3 8 ( )  
5.02454( ) 

3,15762(0) 
6.28115(0) 
9.31696(0) 
1.25556(I)  
1.56954(i)  
1.88358(I)  
2 .19765( I )  
2 .51175( I )  
2 .82586( I )  
3 .13997( I )  
3 .45410( I )  
3 .76823( ! )  
4 .08236( I )  
4o39650(I) 
4 .71064( I )  
5 ,02479( I )  
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TABLE V (Continued) 

~n 

n Pr Rcx = 0.1 RcX = I Rc~, = 5 Rc)' = I0 

I 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
i l  
12 
13 
14 
15 
16 

I 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
I i  
12 
13 
14 
15 
16 

.0 

.0 
,0 
.0 
.0 
.0 
,0 
,0 
.0 
,0 
,0 
.0 
,0 
.0 
,0 

ioO 

3.08813(0) 
6.23870(0) 
9.38194(0) 
1.25240(I)  
1.56659( ) 
1.88076( ) 
2.19493( ) 
2.50909( ) 
2,82325( ) 
3.13742( ) 
3.45158( ) 
3.76574( ) 
4.07990( ) 
4.39406( ) 
4 .70822( I )  
5 ,02238(I )  

3.12823(0) 
6.25905(0) 
9.39573(0) 
1.25346( ) 
1.56744( ) 
1.88148( ) 
2.19556( ) 
2.50965( ) 
2,82376( ) 
3,13788( ) 
3.45200( ) 
3~76613( ) 
4.08027( ) 
4.39441( ) 
4,70855( ) 
5,02269( ) 

3.97665(0) 
6.72896(0) 
9.71878(0) 
1.27812(I) 
1.58745( ) 
1.89836( ) 
2.21018( ) 
2,52259( ) 
2.83538( ) 
3.14844( ) 
3,46170( ) 
3,77511( ) 
4°08864( ) 
4.40225( ) 
4.71594( ) 
5,02969( ) 

0.0 
0o0 
0°0 
0.0 
0.0 
0.0 
0.0 
0.0 
0,0 
0.0 
0o0 
0.0 
0.0 
0.0 
0.0 

gOoO 

3°12726(0) 
6.25836(0) 
9.39506(0) 
1.25339(I) 
i .56738( ) 
1,88;42( ) 
2.19549( ) 
2.50958( ) 
2,82369( ) 
3.13781( ) 
3,45194( ) 
3.76607( ) 
4,08020( ) 
4°39434( ) 
4,70848( ) 
5.02262( ) 

5.85193(0) 
7.98581(0) 
1.06266(I)  
1.34828(I) 
1°64431(I) 
Io9460 i ( I )  
2.25111(!)  
2 ,55841(I )  
2 .86719( I )  
3 .17702( I )  
3.48762(t )  
3 .79881( I )  
4 ,11045( I )  
4 ,42245( I )  
4 .73474( i )  
5 ,04725( ] )  

2 .51580(I )  
2 .57441(I )  
2 ,66855(I )  
2 .79491(I )  
2 ,94940( i )  
3 .12788( I )  
3 .32648( I )  
3 ,54184( I )  
3 ,77109(I )  
4 ,01184( I )  
4.26215(f)  
4 ,52044( I )  
4.78541(I )  
5 ,05602( I )  
5 .33140( i )  
5 .61084( i )  

The numbers in the parentheses represent I0 (n) 

5.88148(0) 
8.00794(0) 
1.06478( ) 
1.35038( ) 
1.64640( ) 
1,94811( ) 
2.25321( ) 
2,56050( ) 
2,86928( ) 
3.17912( ) 
3.48972( ) 
3.80091( ) 
4,11255( ) 
4.42455( ) 
4.73683( ) 
5,04935( ) 

5.00748(1) 
5.03713( I )  
5 .08594( I )  
5 .15342( I )  
5 .23889(I )  
5 .34147( I )  
5 .46021(I )  
5 ,59410( I )  
5 ,74205( I )  
5.90303(g) 
6o07600(I) 
6 ,25995( I )  
6o45396(I) 
6 .65715( i )  
6.868'70(I) 
7°08786({) 

! 
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low Peclet number, Pe = I ,  the N = 16 set provides twice the number of 

eigenvalues as the N = 8 set in #he range 0 $ 6 n $ 600 with the approx- 

Imate maximum value, 6ma x = 50. Since the magnitude of the eigenvalues 

is the con t ro l l i ng  fac tor  in determlning the t runcat ion point  in the 

l n f | n i t e  ser ies so lu t ion ,  Equation 26, the ca lcu la t ions for  the temper- 

ature development may be in considerable e r ro r ,  I f  the number of eigen- 

values is not s u f f i c i e n t  to assure the convergence. 

The wall blowing parameter, Rc~, Is noted to  also have consider- 

able e f fec t  on the magnitude of the eigenvalues fo r  a par# |cu lar  com- 

b inat ion of Peclet and Prandtl numbers. The magnitude of B tends to  

Increase as the value of the wall blowing parameter Increases. Inspec- 

t i on  of the data presented In Tables i and II fo r  Peclet numbers, Pe = - 

and EO0, reveals that  there Is a r e l a t r ve l y  large Increase in the values 

of the eigenvalues as the wall blowing parameter Increases from RcX = 

0.1 to RcX = I0. In Table I fo r  Prendtl number, Pr = I ,  the eigenvalue, 

61, Is seen to Increase from approximately 90 to  680 as the wall blowing 

parameter Increases from 0.1 to  I0~ I t  is aOso noted tha t  the change in 

magnitude of the eigenvalue with respect to the wall blowing parameter is 

Increased as the Prandtl number changes from Pr = 0.01 to Pr = I0. These 

same ef fec ts  are noticed but #o a lesser exten~ in Tables I l l  through V, 

fo r  Peclet numbers, Pe = I0 and Io In Table IV fo r  Prandtl number, 

Pr = I ,  the eigenvalue, 61, is seen to Increase from approximately 3 to  

6 as the wall blowing parameter Increases from 0.1 to  I0. For the 

large values-of wall blowing parameter and Prandtl number, Rc~ = I0 

and Pr = I0, Tables I I I  and IV indicate a small d i f ference in value fo r  
# 
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successive eigenvalues wi th in  the f i n i t e  set of  funct ions,  N = 8 .  The 

range fo r  Peclet numbers, Pe = 10 and I ,  is ,  respect ively,  49.8 < B n 

55.8 and 50.0 < Cn < 55.9 for  the f i r s t  e ight  eigenvalues. 

One of the in terest ing characfer ls t lcs  of the present method 

is that  the e ight  elgenvalues, which is the maximum number tha t  can be 

evaluated from an e ight  by e ight  determinant, compare extremely well 

with the f i r s t  e ight  eigenvalues evaluated from the N = 16 set,  fo r  the 

case of Pe = I .  Hence, i t  Is s u f f i c i e n t  t o s t a r #  the so lut ion fo r  the 

eigenvalue problem with the N = 8 set,  and la te r  Increase the number of 

approximating set to N = 16 i f  i t  becomes necessary to  calculate 

addi t ional  eigenvalues. 

30 



A EDC-TR-69-58 

CHAPTER V 

ENTRANCE REGION TEMPERATURE DEVELOPMENT 

q 

The elgenvalues evaluated by the B. G. Galerkin method In the 

previous chapter were used to  determlne the temperature development 

under constant wall temperature conditions for  a specif led uniform 

entrance temperaturep To(x 2) = T~. The l inear combination constants, 

c l (n ) ,  associated with the elgenfunction, Fn(Y) , were evaluated from the 

reduced system of l inear equations, Equation 42. For each pa~t icular 

value of B n a set of c i ( n ) ' s  was obtained by use of the Gausslan re- 

duction technique on the plvotal element of the coe f f i c ien t  matr ix.  

The analy t ic  and approximate solut ions for  the f u l l y  developed 

tempeFature, e=(y), are given ~n Appendix B. The approximate B. G. 

Galerkin method solut ion,  

M 
e=(y) = PrEc e~rnckyL~ ~ Di sin l~y 

I=1 

(51) 

was used since an extensive s imp! i f i ca t ion  in the evaluatlon of the 

requlred integrels for  the An's was possible° In the present study, 

twenty terms were used to determine the f u i l y  developed temperature 

given In Equation 5 i .  The f ina l  form of the dimensionless excess 

temperature, Equatlon 45, becomes, 

~(y,E) = e(y,E) 
T(y,E) - T w T®(y) - T w 

- e ® ( y )  = ~ _ Tw - T~ - T w 
(52) 
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or, 

T(y,E) - T w 
T~ - T w 

= An e~PrRcXY ci (n) s in Ivy e "snE 

n=l I=1 

+ PrEc e ~°rRcxy ~=1 D i s in Ivy (53) 

The system of simultaneous equations fo r  the evaluat ion of  the 

AnWS Is f,-om Equation 47 

K 

7. 
n=| 

A n [ I (m,n)~  = L(m) 

Fol lowing the general procedure as ou t l i ned  in Chapter I I I ,  the 

necessary in tegra ls  fo r  the evaluat ion of  the AnVS by the Welerstrass 

approximation theorem are evaluated by ana ly t i ca l  In tegra t ion  as, 

I (m,n) = ci (n) s in ivy 

o I=1 . - 

c j  (m) sin Jvy ]  e PrRcxy dy = 

i=l j=l 

[ , , ]] 
(PrRck) 2 + ( i ' j ) 2 ~  2 - (PrRck)2 + ( i+ j )2w 2 (54) 
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and 

L(m) -PrEce ~PrRcxy D I sin I= sin j= e~PrRcXy dy = 

or. I=l .LLj=I 

j=l 

M N 

PrEc ~ .  ~ .  

i=l j=l 

ITP I rRcX)2 + ( i - j )2T2 (PrRck) 2 + ( i+ j )2v 2 (55) 

where, 

cl(m) = c l (n)  = I (56) 

from the def in i t ion of the eigenfunctions an(y) , and constants, A n . 

Since the l inear combination constants, ci(n)' , are completely detemined 

for  the set of eigenfunctions, the Integrals, Equation 54 and Equation 

55, are readily evaluated for solution of An'S from the system of l inear 

equations. 

The system of l inear equations was solved by the Gausslan re- 

duction scheme for various values of the parameters Pr, PrEc, and RcX. 

The excess temperature was evaluated at ~enty-one points across the 

channel for  d i f fe rent  axial locations, E. 
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The development of the dimensionless temperature, e(y,6) ,  along 

the channel is presented in Figures 2 through 12 for  various values of 

wall blowing parameter, RcX , Prandtl number, Pr, and the product of the 

Prendtl and the pseudo Eckert numbers, PrEc. For various axial Ioca- 

t ions,  6, p ro f i les  are given for  values of the Peclet number, Pe = - ,  

I00, I0, and I .  

The e f fec t  of the wall blowing parameter on the dimensionless 

temperature pro f i les  is shown in Figures 2 through I0 for  Prendtl number, 

Pr = Io The hydrodynamic case with no wall blowing is approximated by 

the condit ions presented in Figures 2 through 4. I t  is noted that  these 

condit lons, In wh'ich RcX = 0.1, produce p ro f i les  which are approximately 

symmetrical about the channel center l ine.  Inspection of the data pre- 

sented in Figures 5 through 9 shows that the excess temperature pro f i l es  

become more non-symmetrical as the wail blowing parameter Increases from 

RcX = I to RcX = I0. The maximum value of excess temperature fo r  a l l  

axial coordinate posi t ions,  6, is observed to be displaced toward the 

upper channel wall at y = I .  This resul t  is to be expected due to the 

in ject ion of f l u i d  through the lower channel wal l ,  y = O, with a temper- 

ature of Two From Figure A- I ,  page 73, the wall blowing parameter is 

noted to d!sptace the ve loc i ty  p ro f i l e  toward the upper channel wa l l ,  pro- 

ducing greater vetoc l ty  gradients near th is  wal l .  The displacement of 

the ve loc i ty  p ro f i les  resul ts in greater heating due to viscous ef fects  

in the region near the upper wall of the channel, which also tends to 

produce non,symmetricaE temperature p ro f i l es .  Inspectlon of the data 

Indicates that  the wall blowing parameter tends to decrease the magnitude 
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of the excess temperature p ro f i l es  fo r  a pa r t i cu la r  value of 6. This 

can easi-I y be exp Oai ned since !ncreas! ng va I ues of Rc~ decrease the mean 

ve loc i~ /  of the f l u i d  fo r  a given pressure drop, see Figure A-2, page 

749 which resul ts  in a lesser e f fec t  due to viscous d lss ipat lon .  

Data are presented for  three values of the product of the 

Prendtl and pseudo Eckert number, PrEc = I0, I00, I000. This parameter 

represents the ra t i o  of the d iss ipat ion in the f l u i d  to conduction due 

to the temperature di f ference between the entrance and the wall con- 

d i t i ons .  In each f igure PrEc = I0 represents the case of strong cool-  

ing e f fec t  due to large temperature d i f ference between the entrance and 

the wall condi t ions, and PrEc = I000 represents the case of dominant 

overal l  d lss ipat !on° 

In the f igures where the wall blowing parameter, RcX = 0.1 and 

I,  the excess temperature p ro f i l es  near the entrance region exh ib i t  the 

character ist ic of a dip near the channel centerl lneo This character-. 

i s t i c  dip Is the resu l t  of the inter.hal heat generation due to  viscous 

d iss ipat ion in the boundary layer region which loca l l y  creates an 

Increase in the f l u i d  temperature. For 1arger values of the wall bgowtng 

parameter, Rc~ = 5 and I0, th is  charac te r i s t i c  dip e f fec t  Is diminished 

due to  the displacement of the ve loc i ty  p r o f i l e  toward the upper channel 

wallo Figure I0, page 43, presents the case where the major port ion of 

the viscous d iss ipat ion occurs near the upper wall of the channel. 

Figures I! and 12, pages 44 end 45, are presented to show the 

e f fec t  of the Prandt] number on the dimensionless excess temperature 

p ro f i l es°  Comparing Figure 8, page 41, with Figures I I and 12 In which 

I 
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RcZ = 5, PrEc = I00, with the Prendtl number, Pr = 0o01, 0.1, and I ,  the 

temperature p ro f i l es  are noted fo become more non-symmetrical as the 

Prendtl number Increases with the maximum temperatures being displaced 

toward the upper channel wal l .  The dimensionless excess temperature 

p ro f i l es  presented In Figures II and 12, pages 44 and 45, are noted #o 

be very s im i l a r ;  however, the prof iges in Figure 8, page 41, when com- 

pared to the lower Prandt~ numbers are seen to be consJderebly d i f f e r -  

ent. The larger value of Prandtl number, Pr = I ,  is seen to have a 

r e l a t l v e i y  strong inf luence on the excess temperature d i s t r | b u t i o n .  

I t  is in terest ing to note that  for  the lower Peclet numbers, 

Pe = I00, I0, I ,  the complete temperature p ro f i l e  across the channel, 

in a sense, lags compared to the temperature p ro f i l es  at Peclet number, 

Pe = ®. This e f fec t  can eas i ly  be j u s t | f i e d  by considering the fact  

that  the strong axial  conduction a+ low Peclet numbers resul ts  in heat 

t rans fe r  from the local cross, section to the entrance plane, in addi t ion 

to the cool ing through the channel wal ls .  Neglecting axial conduction 

by assuming the Peclet number i n f i n i t e  which is most commonly t reated in 

the l i t e r a t u r e  can introduce consIderable e r ro r  in the temperature pro- 

f i l e s  fo r  values of the axial  coordinate, E S 1 .0 .  
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CHAPTER Vl 
CALCULATIONS FOR THE BULK MEAN TEMPERATURE 

AND THE LOCAL NUSSELT NUMBER 

S~nce the temperaeure pro f i !es  are not necessari ly symmetric 

about the channel center l ine ,  the value of the local Nusselt number 

based on the heat t rans fe r  through the upper wa l l ,  y = I0 and through 

the lower wa l l ,  y = O, is expected @o have d i f f e ren t  values. The 

local Nusselt numbers for  each wall are defined as: 

and, 

Nu(O,x3) = L[Tm(x3) _ Tw]-I ~T Bx--~" (O'x3) 

Nu(L,x 3) = -LETm(X 3) - Tw] - I  B'r'(L,x3) 
Bx 2 

(57) 

(58) 

where Tm(x 3) is the local bulk mean temperature of the f l u i d ,  

Tm(x 3) - 

rL 
I 
°0 

V3(x 2) T(x2,x3)dx 2 

S L V3(x2)dx 2 
0 

(59) 

Equation 59 can be non-dlmensionalized To y ie ]d a dTmensionless bulk 

mean temperature, em({) , as 

Tm(x 3) - T w 
e m ( ~ )  = T~ - T w 

I 
= J'o u(y)e(y,E)dy 

[ I  u(y)dy 
0 

(60) 

The slopes of the temperature p r o f i l e  at each wall become, 
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aT T~ - T W ~e 
C O ' x 3 )  = L ~-~" CO, t )  

~T T~ - T w Be 
(L 'x3)  = L a-~" ( I ,E)  

(61) 

(62) 

Therefore the equations fo r  the local Nusselt numbers become, 

~0 (0,6) 
co) 

Nu(O,E) = Nu = Nu(O,x 3) = Om(E ) 

c 
NuCI,E) = Nu ( ' I )  = N u C l , x  3 )  = - ~y 

em(E) 

Hence, a modi f ied form of the local Nusselt numbers In terms of the 

dimensionless temperatures becomes, 

(63) 

(64) 

and 

NuCO,~) - I u(y)dy ~ (0,6) + ~-~--(0) 

f }-' I u ly)  ~(y ,E ldy  + foluCy) B~(yldy [o (65) 

I u(y)dy a~ (1,6) + ~ T  ( I )  Nu( l ,~)  = - So 

(o' (I 
J* u(y)~(y ,E)dy + Jo u(y)e®(y)d (66) 

Since the general expressions fo r  ~(Y,E) and e®Cy) are already 

obtalned, the terms in Equations 65 and 66 can be evaluated fo r  each wal l  

a s :  
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, , [  
fo u,y),,y = ~ ½ 

I 
I -eRc x 

I 4v K -Bn~; ~ (n) 
So u(y)~(y,E)dy = ~ A n e c i 

(67) 

Pr, l ~ )  2 + "4i2w 2 

i[e~PrRcX (_1)I _ I ]  
RcX (I-e )[" (PrRcX)2+4I 2~r 2" ] 

4PrRcXlEe~RcX(Pr+2)(-i)i - I~ 
+ 

E(PrRcX) 2 + 412T232 

le PrRcX - ] t i ~ P r + Z )  - ( I ) I  _ I 
%4 

( I-e )l-Rc2~ 2(pr+2) 2+412~2~] 

S~ u(y)e=(y)dy - 4~PrEc 
RcX 

" F Z Di I e ~PrRCx ( - I ) i  
I=1 l (PrRcX)2+412~2 

[(PrRcX) 2 + 412w2] 2 
+ I [ e  ~PrRcx ( - I ) i -  I ]  

( I -e Rcx) l- (PrRcX) 2+412T2-1 

i e ( - I )  - 
HCA ( I-e )ERc2X2(pr+2)2+412~2~ t 

+ 

an K 
"~ ( I ,E)  = ~ Ane-BnE 

N 
(n) e~rRcX i~(_l ) l  

(68) 

(69) 

(70) 

@e= e~rRcX -- ( I)  = PrEc ~y 

M 

7.. 
I=I 

D I I~ ( - I )  I (71) 
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K N 

~II (0,~) e-BnE (n) 

n=l I=1 

IT (72) 

@ e= M 
a T  (0) = PrEc Z D I iv (7.3) 

i=1 

An average Nusselt number, N-u-(x3) , based on the net heat t rans-  

f e r  from the system can be defined as, 

QL 
]TG(x 3) = ~ (74) 

where A is the t o t a l  surface area of the system. The average Nusselt  

number based on the prev ious ly  defined Nusselt numbers fo r  each wa l l .  

becomes, 

N'~-(E) = N~'(x 3) = Nu(O~E) + Nu(L,E} 
2 (75} 

The dimensionless bulk mean temperature and the Ioca l 'Nusse l t  

number f o r  wall blowing parameter, R c = 0.1,  Prandtl number, Pr = I,  

Peclet number, Pe = ®, and product of the Prandtl number and pseudo 

Eckerf number, PrEc = O, are p lo t ted  in Figures 13 and 14. These con- 

d i t l ons  represent c lose ly  the hydrodynamic case which neglects e f fec ts  of 

wall blowing, viscous d i ss ipa t ion  and ax ia l  conduction. These data are 

in good agreement with those found in Reference 2 which are also p lo t ted  

In Figures 13 and 14. The agreement of the present data wtth those 

found in Reference 2 indicates confidence in the data reduct ion procedure 
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used in th is  study. 

The development along the axial d i rec t ion ,  ~, of the dimension- 

less bulk mean temperature, em(~] , and the local Nusselt numbers, 

Nu(I ,~) ,  and Nu(O,~], fo r  the upper and lower channel wall and the aver- 

age Nusselt number, 1~(~), are presented In Figures 15 through 24 fo r  

vanious values of wall blowing parameter, Rc~ p Prendtl number, Pr, 

Peclet number, Pe, and the product of the Prandtl number and pseudo 

Eckert number, PrEc. 

The e f fec t  of the wall blowing parameter on the dimensionless 

bulk mean temperature Is shown in Figures 15a through 18a for  Prendtl 

number, Pr = I. I t  is noted that  there is l i t t l e  change in the dlmen- 

sionless bulk mean temperature development as the wall blowing parameter 

changes from 0.1 to I ;  however, the larger values of wall blowing param- 

e?er, Rc~ = 5 and I0, tend to decrease the magnitude of the bulk mean 

temperature fo r  a pa r t i cu la r  value of ~. As in the discussion of the 

temperature p ro f i l e s ,  th ls  e f fec t  can be explained since increasing 

values of Rc~ decrease the mean ve loc i t y  of the f l u i d  fo r  a given pres- 

sure drop which resul ts  in a lesser e f fec t  due to viscous d iss ipa t ion .  

Inspection of the bulk mean temperatures presented in Figures 

17a, 19a, and 21a for  wall blowing parameter, Rc~ = 5, and Prend#l 

number, Pr = 0.01, 0.1, and I ,  Indicates r e l a t i v e l y  small e f fec t  due to 

changes in the Prendtf number. I? can be shown that  the f u l l y  developed 

bulk mean temperature for  the hydrodynamic case with no wall blowing is 

Tm-Tw 
~ =  0.00476 PrEc (76) 

54 



A EDC.TR.69.58 

10 

,..... 

O1 v • 

E 
C D  

P r - 1  
RcX - O. l 

PrEc - lO • 
PrEc - I ~  • 
PrEc - 10gO • 
P e - ~  
Pe • 10 
Pe • ] 

% 

% 

0.01 
0.0001 0.001 0.01 O,l 1 

x_...L3 
( e )  ~ " PeL 

5 

4 
0 O00l 

proL 
R¢~. • 0.1 
Pll • I~ 
Pe • lO 

PrEc • 10 • 
PrEc - ]OCO • 

I I I I I I I I I  I I ~ J  ~ I I I J I I I I I  I I I I I f I I I  I I I I I I I  

O ~  0,01 0.1 I 

( b )  , ~ ' ~  

10 

Fig. 15 Heat Transfer Parameters; Pr : 1, Rc,~ = 0.1 

(a) Bulk Mean Temperature; (b) Local NusseJtNumber 

5 5  



A E D C . T  R . 6 9 . 5 8  

*°I i 
~r o'" / ] 

~_FN~ . . . . .  4r-"  _.~. . .~r  ° 

, I G o.i 

e o.ol 

0.0001 O.OOl 0.01 0.1 l 10 
x.....2_3 

(a) F. • PeL 

@ 

2 5 L - - "  ~ ~  Pr [] 1 PrEc • lO • 
20 [=~._. _ ~ Rc~, • 1 PrEc - 100 • 

1 i i i i i i i n i a n n n n  I I I I . I .  I 

P e - m  
Pe - 10 
Pe- ] 

Nu(I)-~ 

, I Y  ~° 

0.0(0)I 

(b) 

I I I I I  

O.OOl O.Ol O.l l 
x2 

PeL 

I I I I I I l i l  

lO 

Fig. 16 Heat Transfer Parameters; Pr = !, RcA = ! 

(a) Bulk Mean Temperature; (b) Local Husseltl4umber 

56 



A E D C . T R . 6 9 . 5 8  

10 

: r :  , 

~., o.1 

=e 

0.01 
0.000! 

( a )  

R ~  .5 • ,L.~ \ , , , j ~  C -~  _ 
PrEc -510 • \ 
PrEc - 100 " \ ~ ' \  
P e -,ooo .. \ \ 
Pe - m, ZOO ~ \ -~, i t  
Pe " IO . . . .  ~ "~,. \ . .  
P e - I  - -  . . " - -= " - -  _- 

I I I - i • l l l i I I l l l  I n , I l l l  I I I a I I l l  n n n q l l  

O.OOl 0.0! O. l 1 10 
x3 

u PeL 

lO0 

A 

V 

z 

10 

1 

0.0001 

(b) 

P r -  ! P r E c - l O  • P e - c o  
Rc}, - 5 PrEc - 100 • Pe " 10 

PrEc " 1000 • Pe - I 

i i ' i I I I I i i , , i 1 1  i I 

0.001 0.01 
• . I I I I I  i i i i , J m , ,  I I I . I I l l  

0.1 1 10 
x)  

" PeL 

Fig. 17 Heat Transfer Parameters; Pr = 1, Rc~ = 5 

( a )  Bulk Mean Temperature; (b) Local Nussel t  Humber 

5 ?  



A EDC.TR.69.58 

.~1 ~° 
I I  

A 

v 

O.1I 1 i~.~.i..,~,~...~.~..~~~_~_., _ ~  ~ ~,,. m.,._ - ~ ~'~~ ~k ~~''~ - ~"~ - ~l" 

f 77'1o \ \ 
o.o,L fi!iTi Ooo! \ - .  \ . _  

Pe - m, 100 - - - - - - -  :" • - 
Pe - 10 
P e - 1  

001 I I I I I I I I ,  I i , I I i i i i  i I I I I I I I  I I I I I I I I I  I I I I I I I I  

O.O00l 0.001 O.Ol 0.1 1 10 
x_L 

(a) F,- PeL 

z 

100 

I0 

0.1 
0.0001 

A i 

_ / f  ',. . . .  ,._,<," / / "-....-" 
/ P , . ~  ,>r,°-~O • ,:',-,,,,00 

"~-  e/ Re), -io PrEc- 100 • Pe- 10 - PrEc- 1000 • Pe- ! 
I I I i l i i l l  i i , i i i i i i  I i i I i i i 1 .  I I [ I i i i i i  i i i i i l i  I 

O.OOl .0.01 O. l l 10 
x3 

(b) ~" PeL 

Fig. 18 Heat Transfer Parameters; P r - -  I ,  R©~- -  10 

(a) Bulk Mean Temperature; (b) Local Husseh Number 

58 



AEDC-TR.69.58 

'°F z~>- , - - -  J *~. 1 
I ~ . : _ : . . - : ' ~ . ~ _ _ . . . i ~  / 

I :¢r;¢'°10• \ ""',, ~ I 

0.01 

~1 ~ 

0.0001 0.001 0.01 0.1 
x3 

(a) ~ "  PeL 

I I0 

3O 

25 ~ Pr-0.01 PrEc [] 10 • Pe-co 
RcX - 5 PrEc [] 100 A Pe- 10 

20 " ~  PrEc [] 1000 • Pe- 1 

. . . . . .  - - - - - - - -  ~ 

_ "-.. - ,~---;~ ,,/- / ~ ) /  
g,o " ~ - , / , ~ .  ,, ,,' 

...~'~ / / - %  / / ' -  / i - -  / ~- - - - . . . .~ - - -~~ , , , / /  %," / , , -  ~°~ 
', '" -;, ,%,,,ad/ 

3 . . . . . . . . . . . . .  " , . ~ ~ N u O ) J  . 

O.O00l 

( b )  

I I i i i i I i I 

0.001 0.01 0.1 1 10 
x3 

" PeL 

Fig. 19 Heot Transfer Parameters; Pr = 0.01, Rc,l : 5 

(a) Bulk Mean Temperature; (b) Local Nusselt Humber 

59 



AEDC-T R-69-58 

~ , o  

u 

M 

E 

,° I 
1 .  - ~- -----='=~--- - : ' ~ ' - - - - - - - - - ' - - ~ " " - ' - - - - -  - = 

"~"-~ , , ,  x'-,, 
P r - O. 01 -e,,~ "', ~ \ ' " " k ,  

e r E c -  lO • k L ~ : \  " - "  ±'-~ "- -" 
PrEc " lOO • \ ~ \ 
PrEc-1000 " \ 4 
Pe " m - -  - -  \ ~,, " 
Pe-  - - \ ' ,  \ 

0.1 

0.01 
0.0001 

' ' ' , l l '  

0.001 0.01 0.1 1 10 
x...!_3 

(a )  ~ "  PeL 

30 

;5 

20 

1.5 

'~' 10 

31 
0.0001 

Pr-O.O1 P r E c - l O  • P e - m  
R ~, - lO P rEc -  100 • Pe-  10 
c PrEc • 1000 " Pe - 1 

0.001 0.01 0.1 1 
X2 

(b) ( - -- 
PeL 

Fig. 20 Heat Transfer Parameters; Pr = 0.01, Rck -- 10 

(a) Bulk Mean Temperature~ (b) Local Nusselt Humber 

I0 

60 



AEDC-TR.69.$8 

, 4 ,  

II 

~ o.z 

0.01 
0.0001 0.001 0.01 0.1 1 I0 

x._L 
( a )  ~ " PeL 

20 

15 

A 

5 

31 
0.0001 

Pr - 0.1 PrEc • 10 • Pe - co 

I . . . . . . . .  _ _  . .  ..... 

0.001 0.01 0.I 1 I0 
x3 

Cb) ( - - -  
PEP,. 

Fig. 21 Heat Transfer Parameters; Pr : 0.01, Rc,~ ~ 5 

(a) Bulk Mean Temperature; (b) l o c a l  Nusselt  Humber 

61 



A E DC-T R-69-58 

10 

- 1 

I 

~e 0.1 

0.011 . . . . . . . . . . . . . . . . . .  , ,  ,T, , , ,T , ,  .T . . . . . . . .  T., .J 
0.0001 0.001 O.Ol O. l 1 10 

(a)  ~ . x3 

" PeL 

_ ; _ _ : = ~ - - - ~ = = ~ _ ~ - -  : - 

Pr - O. 1 "~-'~ \~ \ , = ~  
Rc~ 
PrEc "-iO • '~e : ~ ' ' - -  -" \ """---  "-~. 
PrEc - 100 • \ \. \ 
PrEc - lO00 " \ ~ ~,. 

;::~o : \ "\ \ 
P e - 1  ' \ ~ ~ , ,  

P r - O . I  P rEc -  10 • Pe-oo 
Rc~ • 10 P rEc -  100 • Pe-  10 

- P rEc -  1000 • Pe-  1 

Nu I1) 
z5 t : ~ 

_ ! , <  
I ~ - " - ' 1  \ " Y  )' 'k'k'~ , I  / 

, I 

. . . .  

0.0001 

(b}  

0.001 0.01 0.1 1 10 
x2 
PeL 

Fig. 22 Heat Transfer Parameters; Pr = 0.1, ReX = 10 

(a) Bulk Mean Temperature; (b) Local Nusselt Number 

62 



A EDC-TR-69-58 

~ °  

II 

A 

,U..P 

g: 
( D  

10 

1, ~ " i 

0.1 

0.01 
0.0001 0.001 0.01 0.1 1 10 

x...~3 
( a )  ~= " PeL 

/ 
25 l- Pr = 10 Pe = m 

;o/ °.Ofo " ; : : ,o 
I- . . . .  ~ - ~ . ~  . .  P r E c - 1000 • 

~ I I I I I I I  I I I I I I I I I I /  I I I I I  I , i i l l  I I I I I I I  

0.0001 

( b )  

0.001 0.01 O.l 1 I0 
x3 

~J = PeL 

F ig .  23 Heat Transfer  Parameters; Pr = 10, Rc,~ -- 0.1 

(a) Bulk Mean Temperature; (b) Local Nusselt Humber 

6 3  



AEDC-TR-69-S8 

10 

. ~ . ~ 1 , - - - =  . . ~ . l r  f ~ ' - -  e 

~ .  ~o ~.__. \'--,,...~ 
, Rc~,  - 1 \ \  - - - = - - ±  \ 

_ PrEc - ]0 • \ ~  ~t~ 
0.1 PrEc • 100 • ' e \  \ 

P~E~-100o • ~ \ 
Pe - m - -  - \ \ .  \ 

Pe-  1~ - " ~"~-~._ 

o.o  _ . . . .  . . . . . . . . . . .  . . . . . . . . . . . . . . .  

A 

0.0001 0.001 0.01 
X3 

(a )  F,-  PeL 

I I I I t i l l  

0.1 1 10 

100 

A 

v 

Z 

%, 

\ 

10 

1 E ",.  

N'u(1) --~ 

Pr - 10 PrEc - 10 • 
Rc), [] 1 PrEc - 100 • 

PrEc - lO00 " 
0 . 1 ~  
0.0001 0.001 0.01 0.1 

x3 
(b)  ~ " PeL 

P e - m  
Pe - 100 . . . .  
Pe - 1 

10 

Fig. 24 Heat Transfer Parameters; Pr -- 1 0 ,  R c ; ~  - -  1 

(a) Bulk Mean Temperature; (b) local  Nusselt Number 

q t  

64  



A EDC-TR.69.58 

Equation 76 is in excel lent agreement with the f u l l y  developed bulk mean 

temperatures found in Figure 15a, page 55, for Prandtl number, Pr = I ,  

and wall blowing parameter, RcA = 0.1, which approximates closely the no 

wall blowing case. 

Figures 15b through 18b, pages 55 through 58, with Prandtl 

number, Pr = I ,  demonstrate the ef fect  of the wall blowing parameter, 

RcX, on the development of the local Nusselt numbers. As was expected 

from observation of the temperature pro f i les ,  the lower wall Nusselt 

number, Nu (0) is decreased and the upper wall Nusselt number, Nu ( I )  P 

is Increased as the wall blowing parameter increases from 0.1 to I0. 

From Figure 18b in which RcA = I0, the upper wall Nusselt number is 

noted to be approximately 55 while the lower wall Nusselt number ls 

noted to be approximately 1.5 for  the f u l l y  developed thermal condit ions. 

Simi lar differences in magnitude of the Nusselt number are noted for  

axial posi t ions, E, where the thermal pro f i les  are not f u l l y  developed. 

i t  can be easi ly shown that the hydrodynamic case with no wall 

blowing has an average Nusselt number, ~ ' =  8.75, for f u l l y  developed 

thermal condit ions. The data presented in Figure 15b with Pr = I and 

RcX= 0.1 approximate the case with no wall blowing, and the Nusselt 

number at f u l l y  developed conditions agrees reasonably well wlth th is  

value. 

Inspection of the data presented in Figures 15 through 18 indicates 

the ef fect  of the wall blowing parameter RcX , on the length of channel, 

E, reauired to obtain f u l l y  developed thermal conditions. I f  is seen 

that increasing values of the wall blowing parameter tend to decrease 
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the value of the ax ia l  coordinate,  E, required ,o  produce f u l l y  developed 

bulk mean temperatures and Nusselt numbers. 

I t  is noted from the Inspect ion of the curves fo r  loca l  Nusselt 

number versus ax ia l  coord inate,  E, tha ,  a decrease in value below tha t  

f o r  f u l l y  developed cond i t ions  ex is ts  fo r  the product of Prandtl number 

and pseudo Eckert number, PrEc = I0 and I00. This dip e f f e c t  In the 

Nusselt  number indicates tha t  the temperature slope at the channel wal ls  

is decreasing at  a more rapid rate than the decrease in the bulk mean 

temperature. This resu l t  is due to  the large temperature d i f fe rence be,ween 

the entrance plane and the wall condi t ions f o r  the lower values of  the. 

PrEc product. For small values of ax ia l  coordinate,  E, there is a 

large temperature grad ient  local ized near the channel wal ls  due to  con- 

duct ive heat t r ans fe r  to  the wal ls .  In Figure 14, page 53, f o r  the 

case with no viscous d iss ipa t ion  e f f ec t s ,  the Nusselt  number is noted 

,o  exh i b i t  a monotonical ly  decreasing c h a r a c t e r i s t i c  in the ,hemal  

entrance region. 

The e f f e c t  of the Peclet  number on the buik mean temperature 

development is s i m i l a r  to tha t  mentioned in the previous chapter con- 

cerning the dimensionless temperature p r o f i l e  development. I t  is seen 

tha t  fo r  the low Peclet  numbers, Pe = I0 and 1, the at tainment of  f u l l y  

developed condi t lons lags as compared to  the case of Pecle,  number, Pe = 

=. Inspect ion of the data fo r  the local Nussel,  number reveals a s lm i l a r  

lag in development f o r  the low Peclet  number which again v e r i f i e s  the 

impor,ance of the ax ia l  conduction term which Is usua| ly  neglected in 

,hemal  entrance region problems. 
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CHAPTER VII 
GENERAL CONCLUSIONS 

From the resul ts  of the present study, i t  Is concluded that  

mathematically the B. G. Galerkln method has d i s t i n c t  computatlonal 

advantages over the c lassical  analy t ica l  and numerical techniques in 

appl icat ion to the elgenvalue problems associated with thermal entrance 

region analyses. The complete genera l l ty  of the method, per ta in ing to 

the form of the d l f f e r e n t l a l  equation and the boundary condi t ions, makes 

I t  posslble to obtain solut ions fo r  the extended elgenvalue systems 

resu l t ing  from the formulat ion of the problem by considerlng the e f fec ts  

of the wall blowing parameter and the axial conduction term. From th i s  

so lu t ion ,  expressions fo r  the temperature d i s t r i b u t i o n ,  bulk mean tem- 

perature, and local Nusselt numbers have been obtained.' 

Numerical resul ts  have been presented to show the e f fec ts  of 

the wall blowing parameter, viscous d iss lpa t ion ,  and axial condu~ion on 

the temperature and local Nusselt number development in the entrance 

region of a para l le l  p late channel under constant temperature wall con- 

d l t l ons .  The resul ts ve r i f y  the fact  that  fo r  small Peclet numbers the 

temperature p ro f i l es  and local Nusselt numbers deviate considerably from 

the previously treated cases of i n f i n i t e  Peclet number. The data pre- 

sented also indicate the marked e f fec t  of the wall blowing parameter on 

the temperature p ro f i l es  and the heat t ransfer  parameters, 
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APPENDIX A 
SOLUTION FOR THE FULLY DEVELOPED VELOCITY PROFILE 

The governing equation for the f u l l y  developed veloc i ty  pro- 

f i l e  Is a non-homogeneous l inear d i f f e ren t ia l  equation as fol lows from 

Equation 13, 

d2u du 
(y)  - RcX ~ (y)  = - I  (A I )  

The complementary function for Equation AI is 

Uc(Y) = Cl eRcxy + c 2 (A2) 

Using the method of undetermined coef f ic ients  let  us f ind a par t icu lar  

integral for  Equation AI, We assume a par t icu lar  solut ion of the form 

Up(y) = c3Y (A3) 

which y ie lds,  

Up(y) = R c-- ~ (A4) 

Application of the boundary condit ions, 

u(O) = O, u( I )  = 0 

resul ts in the solut ion for the f u l l y  developed veloc i ty  p ro f i l e  as, 

(A5) 
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I I - e Rcxy ] 
u ( y )  = Y " I e Rcx 

(A6) 

i t  is eas i l y  shown by app l i ca t ion  of L 'Hop l ta l t s  ru le  tha t  the l i m i t  o f  

Equation A6 is ,  

i L im i t  u(y) = ~, (y - y2) (A7) 
RcX ÷ o  

which checks the ord inary  channel f low so lu t ion  wi thout  wal l  blowing. 

P ro f i l es  of the non-dlmensional ized ve loc i t y  as a funct ion of the wal l  

blowing parameter, Rck, are presented in Figure AI. Inves t iga t lon  of 

the e f f ec t  of  the wal l  blowing parameter on the f u l l y  developed v e l o c i t y  

p r o f i l e  resul ted in the se lec t ion  of Rck = 0.1,  I ,  5, and I0 fo r  f u r t he r  

ca l cu la t i ons .  

The mean v e l o c i t y ,  V m, is def ined as 

• o 

I sL V)(x2)dx 2 = Vc Vm = ~  o 

A dimensionless mean ve l oc i t y  Is def ined as 

S I u(y)dy (A8) 
0 

which becomes 

Vm 
Um =~c (A9) 

eRcX(2-RcX) - RcX - 2 
u m = (AIO) 

2Rc2X2 (I - e Rck) 

A p lo t  of the non-dimensional lzed mean ve l oc i t y  as a funct ion of the 

wal l  blowing parame,er Is shown in Figure A2, page 74. 
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APPENDIX B 

SOLUTION FOR FULLY DEVELOPED DIMENSIONLESS TEMPERATURE PROFILE 

The governing equation for the fu l ly  developed temperature 

prof i le is a non-homogeneous linear di f ferent ia l  equation as follows 

from Equation 20, 

u .  d28 de Ida )12 d-Y (y)-PrRc~ ~ (y) = -PrEc (y (BI) 

with boundary condition~ 

8 = ( I )  = 0 , 0®(0)  = 0 (B2) 

Since the analytic solution for the fu l ly  developed tempera- 

ture prof i le is a very complicated expression, an extensive simpli f ica- 

tion in evaluation of the integral, Equation 49, is possible by using 

the G. B. Galerkin method to obtain a series solution for Equation BI. 

Defining a new function as 

G=(y) = e-~PrRcXY 8=(y) (B3) 

which is substituted Into Equation BI to yield, 

d2G pr2Rc2k24 [du~_~(y t2 dy -~(y ) -  G®(y) = -PREce-~PrRcXY (B4) 
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Assume an approximate so lut ion of Equation B4 as 

G=(y) = 
M 

~ .  D~ s in i l y  

i=1 

Subst i tute Equatlon B5 Into Equation B4 which gives, 

(BS) 

D~ -12~ 2 sin Ixy pp2Rc2X2 
" -  4 s i n  lwy  = 

I=1 

(B6) 

Following the method of B. G. Galerkin hence mu l t i p l y ing  Equation B6 by 

~k(y) = s in k~y and In tegrat ing over the range 0 $ y $ I ,  

M 

i=l  
i )  = -PrEcI2(k ) 

k = 1,2,3, . . . .  M (B7) 

where the in tegra ls  ere given by: 

i i ( k p i  ) = ~1 s in  i~y s in  kwy dy = 
0 

I 6i k (BS) 
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[°u (y,]2 s ,n.y °, = I2(k) = rio W 

' " 

~2Rj,4k2~ 
I2RcX k 
Ll_eRc~ J f (2,~_pr,~)2+4k2.2] [ I-e (Rc~-~Pr'~)(-I)k? + 

(Bg) 

Equation B7 is a non-homogeneous system of linear equations which can 

be solved to determine the D~ls, Since I i (k , l )  is the Kronecker delta 

Equation B7 can be written as follows, 

-2PrEc I2( I ) 

If D r is redefined as, 

- 212 (  i ) 

then, 

(BlO) 

(BII) 

M 
G®(y) = PrEc ~'~ D i sin lwy (BI2) 

i=l 
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From E auation B3 the fully developed dimensionless temperature profile 

becomes 

e=(y) = e ½PrRcxy G=Cy) = 

M 
PrEc e½PrRc ~y ~ D i sin i~y (BI3) 

i=I 

The approximate solution for the present study was obtained by using 

twenty terms° H = 20, in the series solution. 
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h e a t  t r a n s f e r  
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Arnu1,1 A F b  T ,  ,m  
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Security Class i f i ca t ion  




